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UNIT ROOT TEST IN A
THRESHOLD AUTOREGRESSION:

ASYMPTOTIC THEORY
AND RESIDUAL-BASED

BLOCK BOOTSTRAP
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London School of Economics

This paper develops a test of the unit root null hypothesis against a stationary
threshold process+ This testing problem is nonstandard and complicated because
a parameter is unidentified and the process is nonstationary under the null hypoth-
esis+ We derive an asymptotic distribution for the test, which is not pivotal with-
out simplifying assumptions+ A residual-based block bootstrap is proposed to
calculate the asymptotic p-values+ The asymptotic validity of the bootstrap is
established, and a set of Monte Carlo simulations demonstrates its finite-sample
performance+ In particular, the test exhibits considerable power gains over the
augmented Dickey–Fuller ~ADF! test, which neglects threshold effects+

1. INTRODUCTION

A time series with nonlinearity or breaks often generates a sample path, which
is similar to that of a unit root process in a finite sample+ A large literature has
grown regarding testing the unit root null hypothesis against a stationary time
series that exhibits nonlinearity or breaks+ For example, Perron ~1989! and Balke
and Fomby ~1997! considered break models and threshold models, respec-
tively+ In particular, the latter work has brought broad applied attention to this
testing problem by introducing threshold cointegration, and Lo and Zivot ~2001!
and Bec and Rahbek ~2004! review various applications+ Although they con-
cern a self-exciting threshold autoregression ~SETAR! of Tong ~1990!, Enders
and Granger ~1998! proposed a momentum threshold autoregression ~M-TAR!
model whose thresholding is based on a difference of the series+

Although standard unit root tests such as the augmented Dickey–Fuller ~ADF!
test can be applied when the true process is a threshold-type model, the power
of such tests can suffer significantly+A series of work has been done to develop
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appropriate tests and econometric theory+ Caner and Hansen ~2001! developed
an asymptotic theory for M-TAR and proposed a bootstrap+A cointegration test
for the threshold cointegration model was developed by Seo ~2006!+ This paper
considers SETAR+ Although all these models and tests appear similar, each
demands distinct distribution theory depending on how nonlinearity and non-
stationarity are combined+ For instance, unlike M-TAR SETAR involves a non-
linear transformation of a nonstationary variable+

This paper develops a unit root test in a SETAR model:

Dyt � �a1 yt�1 � ut , if yt�1 � g,

a2 yt�1 � ut , if yt�1 � g,
(1)

where t � 2, + + + , n+ Hansen ~1999! reviews its application to various economic
time series including gross national product ~GNP!, industrial production,
unemployment rate, stock volatilities, etc+ Threshold cointegration entails
SETAR to the error-correction term, and thus the unit root test developed in
this paper can be applied+ Discriminating nonstationarity from nonlinearity is
important in this framework+ Indeed, a series of papers has emerged to test
the unit root hypothesis, a1 � a2 � 0, in the model ~1!+ The case with fixed g
was studied by Enders and Granger ~1998!+ The case with free g has been
considered by Kapetanios and Shin ~2006!, Bec, Guay, and Guerre ~2008!,
and Park and Shintani ~2005!+ These authors differ on the treatment of the
parameter space for g+ Kapetanios and Shin ~2006! consider a compact param-
eter space for g, Bec et al+ ~2008! a parameter space that expands at the Mn
rate, and Park and Shintani ~2005! a random parameter space+ Our develop-
ment is based on the compact parameter space, which we demonstrate has
some power advantage+

This paper differs from the aforementioned papers on the following issues+
We allow for serial correlation and nonlinearity in the error ut and develop a
bootstrap theory+ The presence of serial correlation is standard in the unit root
testing, and that of nonlinearity is natural when the alternative model is nonlin-
ear+ We show that this generality introduces bias terms in a complicated way+
Ng and Perron ~1995! demonstrate that direct estimation of the bias exhibits
poor finite-sample performance+ The approach by Said and Dickey ~1984! is
not appropriate because of nonlinearity+ Instead, we consider a residual-based
block bootstrap ~RBB! in the spirit of Paparoditis and Politis ~2003! to allow
for general dependence in the error ut +

We establish the consistency of RBB, which generalizes that of the standard
unit root tests in Paparoditis and Politis ~2003!+ This is nontrivial because the
testing problem is nonstandard as a result of the presence of an unidentified
parameter under the null as in Davies ~1987! and because the null model is an
integrated process+ The nonlinear transformation of an integrated process com-
plicates the asymptotic and bootstrap theory in different manners because of
the blocking resampling scheme+ Although Caner and Hansen ~2001! proposed
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a residual-based bootstrap for a unit root test in M-TAR, they did not provide
theoretical justification+

The finite-sample performance of the proposed bootstrap test is examined
through Monte Carlo simulations+ The ADF test has some power over the thresh-
old alternative and has been used in practice+ We find that our bootstrap test
exhibits reasonable finite-sample size property and substantial power gain over
the ADF test, whereas a higher order property of the bootstrap is not studied+
We also consider the random parameter space setup and find that the bootstrap
associated with such construction does not improve upon the ADF test+ These
findings do not depend upon the block length selection+

The remainder of this paper is organized as follows+ Section 2 introduces the
model and the test statistic and develops the asymptotic theory for the test+ The
RBB is introduced and its asymptotic validity is established in Section 3+ Sec-
tion 4 presents simulation evidence for finite-sample performance of the boot-
strap+ Section 5 concludes+ All proofs are collected in the Appendix+

2. UNIT ROOT TESTING IN SETAR

Rewrite the model ~1! as follows:

Dyt � a1 yt�11$ yt�1 � g%� a2 yt�11$ yt�1 � g%� ut , (2)

where 1${% is the indicator function and g belongs to a compact set G � R+ The
error process $ut % can be a serially dependent nonlinear process+ The result in
this paper naturally extends to three-regime SETARs, which are also employed
widely in practice ~see, e+g+, Balke and Fomby, 1997!+

This paper considers testing the unit root hypothesis

H0 : a1 � a2 � 0 (3)

against the alternative of a stationary SETAR process+ Unfortunately, our under-
standing is not complete as to the stationarity conditions for general SETAR
processes+When the errors are independent, Chan, Petruccelli, Tong, and Wool-
ford ~1985! showed that a necessary and sufficient condition of stationarity is
a1 � 0, a2 � 0, and ~a1 � 1!~a2 � 1! � 1, which suggests that the natural
alternative to H0 should be

H1 : a1 � 0 and a2 � 0+ (4)

As in the standard unit root testing, the least squares ~LS! estimator of a1

and a2 is consistent under the null ~3! despite the serial correlation in ut + Dif-
ferent auxiliary regressions can be considered to get different but consistent
estimators of a1 and a2 and therefore different statistics to test the null+ Phillips
and Perron ~1988! considered a bias-corrected t-statistic based on the regres-
sion of Dyt on the constant and yt�1, and Said and Dickey ~1984! proposed the
ADF test based on the regression of Dyt on the constant, yt�1, and the lagged
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Dyt ’s+ Although the Phillips–Perron test can be applied to more general error
processes, it is often very difficult to estimate the bias term precisely for the
sample size encountered in application+ Although the ADF test often performs
better than the Phillips–Perron test, it is justified only for the autoregressive
moving average ~ARMA! process+ If $ut % is a nonlinear process, however, the
ADF test is not bias-free but may reduce the bias as in prewhitening+We employ
an ADF-type test statistic and approximate its sampling distribution by a RBB,
which allows for nonlinear processes+

Specifically, we estimate the following auxiliary regression:

Dyt � [a1~g!yt�11$ yt�1 � g%� [a2~g!yt�11$ yt�1 � g%

� [m~g!� [r1~g!Dyt�1 � {{{� [rp~g!Dyt�p � [et ~g!, (5)

where Zu~g! and [e~g! are the LS estimate of a parameter u � ~a1, a2, m, r1,
+ + + ,rp!

' and the regression residual for a fixed g+ Let [s 2~g! denote the resid-
ual variance n�1 �t�p�1

n [et ~g!
2, and [s0

2 that of the null model+ Then, the LS
estimators are

[g � arg min
g�G

[s 2~g!, [s 2 � [s 2~ [g!, and Zu� Zu~ [g!+ (6)

The test is based on the Wald statistic

Wn � n� [s0
2

[s 2
� 1�� sup

g�G
n� [s0

2

[s 2~g!
� 1�� sup

g�G
Wn~g!, (7)

where Wn~g!� n~ [s0
20 [s 2~g!� 1! is the Wald statistic for a fixed g � G+ Thus,

the statistic Wn is the well-known “sup-Wald” statistic advocated by Davies
~1987!+ To obtain the asymptotic distribution of the statistic, make the follow-
ing assumption+

Assumption 1. Let yt � y0 � �s�1
t us and $ut % be strictly stationary with

mean zero and E6ut 62�d � `, for some d � 0, and strong mixing with mixing
coefficients am satisfying �m�1

` am
102�10~2�d! � `+ Furthermore, fu~0! � 0,

where fu denotes the spectral density of $ut %+

Next, introduce some notation+ Let @x# denote the integer part of x and n
denote the weak convergence of stochastic processes indexed either by r �
@0,1# or by g � G under the uniform metric+ Next, define the autocovariance
function r~k! � Eut ut�k and let s 2 � r~0!,l � �s�1

` r~s!, and the long-run
variance v2 � �s��`

` r~s!+ Assume that y0 is zero for simplicity+ Wooldridge
and White ~1988! show that under Assumption 1 ~1��Mn !y@nr#n B~r!, where B
is a Brownian motion with variance v2 + The following theorem serves as a
building block for the derivation of the asymptotic distribution of the Wald
statistic+
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THEOREM 1+ Under Assumption 1, as n r `,

1

n �
t

yt�11$ yt�1 � g%ut n �
0

1

B1$B � 0%dB � l�
0

1

1$B � 0%.

This result is derived using the martingale approximation of Hansen ~1992!
and extends that of Park and Phillips ~2001!, which considered martingale dif-
ference sequences for $ut %+ Serial correlation in $ut % introduces the bias term+
Because of our assumption regarding compact parameter space, the parameter
g degenerates asymptotically+ The remark following Theorem 5 in Section 3
discusses implications on our test in relation to the bootstrap+A consequence of
this theorem is that the convergence rates of the slope estimators are the same
as in the linear models, i+e+, [ai ’s are super-consistent, and the others are square
root n consistent+ We turn to the asymptotic distribution of the Wald statistic+

Some more notation is useful+ Let Gp denote the covariance matrix of
~ut�1, + + + ,ut�p! and gp, Irp, and ip be p-dimensional vectors whose k th ele-
ments are r~k!,�i�1

k r~i � 1!, and 1, respectively+ Also, let

Ap, L � ~1 � gp
'Gp

�1 i!��
0

1

OBL dB � l�
0

1

1$B � 0%�� gp
'Gp

�1 Irp�
0

1

1$B � 0%,

Ap,U � ~1 � gp
'Gp

�1 i!��
0

1

OBU dB � l�
0

1

1$B � 0%�� gp
'Gp

�1 Irp�
0

1

1$B � 0%,

where OBL � B1$B � 0% � �0
1 B1$B � 0%, OBU � B1$B � 0% � �0

1 B1$B � 0%+

THEOREM 2+ Suppose that Assumption 1 holds. Then, as n r `,

Wnn ~s
2 � gp

'Gp
�1 gp !

�1 ~Ap,L Ap,U!� �
0

1

OBL
2 ��

0

1

OBL OBU

��
0

1

OBL OBU �
0

1

OBU
2 �

�1

�Ap,L

Ap,U
� .

Because of the recursion property of Brownian motion, the limit distribu-
tions just given are well defined, even though they are nonstandard and non-
conventional+ They depend on nuisance parameters, such as v2,l, r~0!, + + + , r~ p!+
The dependence on the data structure is quite complicated, and thus critical
values cannot be tabulated+ We turn to a bootstrap procedure to approximate
the sampling distribution of Wn+

3. RESIDUAL-BASED BLOCK BOOTSTRAP

This section describes our RBB+ Because of the distributional discontinuity at
the null ~3!, it is crucial to impose the null at a certain stage of resampling to
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achieve consistency of the bootstrap ~see Basawa,Mallik,McCormick, Reeves,
and Taylor, 1991!+ As our null model is the same as that of the standard unit
root test, our bootstrap algorithm is similar to the ones previously proposed by
Park ~2002! and Paparoditis and Politis ~2003! despite some differences in
details+ In particular, we closely follow Paparoditis and Politis ~2003! as we
adopt a blockwise resampling scheme rather than the sieve one to accommo-
date Assumption 1+

RBB proceeds as follows+ First, consider the LS estimates [a1, [a2, and [g
defined in ~6! and construct a sequence of residuals

[ut � Dyt � [a1 yt�11$ yt�1 � [g%� [a2 yt�11$ yt�1 � [g%, t � 2, + + + , n, (8)

and that of centered ones as in Hall, Horowitz, and Jing ~1995!

Iut � [ut �
1

n � b �
i�1

n�b 1

b �
j�1

b

[ui�j , t � 2, + + + , n+ (9)

Second, resample $ Iut %t�2
n by the overlapping blocking scheme of Künsch

~1989!+ For this, choose a positive integer b � n � 1 and let k � @~n � 1!0b#
and l � kb � 1, where @x# is the integer part of x+ Given observations $ Iut %t�2

n ,
we construct n � b blocks, for which the first block is ~ Iu2, + + + , Iub�1!, the sec-
ond is ~ Iu3, + + + , Iub�2!, and so forth+ Then, we draw k blocks independently with
replacement from these n � b blocks and connect them end-to-end, which are
denoted by u2

*, + + + ,ul
*+

Third, construct a bootstrap sample $ yt
*%t�1

l by letting y1
* � y1, and yt

* �
yt�1
* � ut

*, t � 2, + + + , l, and then a bootstrap statistic Wl
* as defined in ~7!

using this bootstrap sample+
Fourth, repeat the second and third steps sufficiently many times to obtain

an empirical distribution of the bootstrap statistic Wl
*, which can be used to

construct a bootstrap p-value of the statistic Wn+
We remark on this algorithm+ Although this four-step approach is standard in

the context of bootstrap unit root testing, there are various ways to modify the
preceding procedure by changing ways to construct [ut , Iut and ut

*+ For instance,
[ut may be replaced by Dyt as in Park ~2002!+ Paparoditis and Politis ~2003!

distinguished the preceding residual-based bootstrap from this difference-based
bootstrap and showed that the former has better power than the latter+ Although
Paparoditis and Politis ~2003! used the demeaning instead of ~9! for simplicity,
the centering in ~9! facilitates the theoretical development that follows and exhib-
its some higher order advantage in the standard block bootstrap as shown in
Hall et al+ ~1995!+ The bootstrap series $ut

*% may be generated from a different
blocking scheme than Künsch’s+ The sieve resampling may also be employed if
$ut % is a linear process+

The main difference of our bootstrap from the previous ones is that the sta-
tistic Wl

* is based on the threshold autoregression ~5!, which makes it more
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difficult to establish the consistency of our bootstrap+ In particular, we need to
establish Theorem 1 for the bootstrap sample $ yt

*%, which is not a trivial exten-
sion of bootstrap invariance principle or direct application of the proof of Theo-
rem 1 to the bootstrap sample as the dependence structure of ut

* is different
from that of ut +

The consistency of our bootstrap draws on the following invariance princi-
ple and convergence of stochastic integral+We introduce some notation+ Define a
standardized partial sum process Sl

*~r! � ~10Mlv* !�t�0
@lr# ut

*, 0 � r � 1, where
u0
* � 0,u1

* � y1
*,ut
* � yt

* � yt�1
* for t � 2,3, + + + , l and v*

2

is the variance
of l�102 �j�2

l uj
* conditional on a realization of $ yt %+ Let W denote a standard

Brownian motion and Tn
* n T in P signify a convergence in which the dis-

tance between the law of a statistic Tn
* of a bootstrap sample and that of a

random measure T tends to zero in probability for any distance metrizing weak
convergence ~refer to Paparoditis and Politis, 2003!+

THEOREM 3+ Suppose that Assumption 1 holds. If b r ` such that
b��Mn r 0 as n r `, then

Sl
*~r!n W~r! in P.

Because of the fast rate of convergence of [ai ’s, it can be shown that the
partial sum process of the resampled centered residuals ~9! is asymptotically
equivalent to that of the resampled $ut %+ The invariance principle for the latter
has been derived in Paparoditis and Politis ~2003!+ Now, we turn to the conver-
gence of stochastic integral+ Although the following theorem makes use of the
martingale approximation as in Theorem 1, the proofs are different because of
the change in dependence structure, which is generated by the blocking resam-
pling scheme+

THEOREM 4+ Suppose that Assumption 1 holds. If b r ` such that
b��Mn r 0 as n r `, then

(i) l�1�k02 �
t�2

l

yt�1
*k

1$ yt�1
* � g%n �

0

1

Bk1$B � 0% in P,

(ii) l�1 �
t�2

l

yt�1
* 1$ yt�1

* � g%ut
*n �

0

1

B1$B � 0%dB � l�
0

1

1$B � 0% in P.

The asymptotic validity of RBB of Wn follows+

THEOREM 5+ Suppose that Assumption 1 holds. If b r ` such that
b��Mn r 0 as n r `, then
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Wn
*n ~s 2 � gp

'Gp
�1 gp !

�1 ~Ap, L Ap,U!� �
0

1

OBL
2 ��

0

1

OBL OBU

��
0

1

OBL OBU �
0

1

OBU
2 �

�1

� �Ap, L

Ap,U
� in P.

We remark on two different ways of treating the parameter space G: fixed
or random+ Our asymptotic development with a fixed compact parameter space
is limited in that the dependence of the sampling distribution of the statistic
on a particular choice of G is not replicated in the asymptotic distribution+ In
the threshold literature, the set G is defined as the probability limit of an inter-
val of the form @qn~p!,qn~1 � p!# , where qn~p! is the pth quantile of the
threshold variable+ In the testing problem in which we are interested, the thresh-
old variable is I ~1! under the null, and the interval is random even asymptot-
ically after the rescaling by the factor of the square root n+ Park and Shintani
~2005! study such an asymptotics with a random parameter space that is a
function of p+

However, the bootstrap makes the discussion more involved+ First, the boot-
strap may improve upon the drawback of the fixed G because the bootstrap
resampling replicates a particular choice of G+ Second, the construction of G for
the bootstrap statistic should be different for the two different approaches+ In
the case of the random G approach, we would set G * as the bootstrap analogue
of G, i+e+, @qn

*~p!,qn
*~1 � p!# where qn

*~p! is the pth quantile of the resampled
threshold variable yt�1

* + In the other case, G * should be fixed at G+ We may not
expect much difference between the two in terms of the size of the test, as the
distributional properties of yt and yt

* are similar under the null+ In contrast, yt is
I ~0! under the alternative, whereas yt

* is I ~1! because the bootstrap integrates
the residuals+ Then, we can easily expect that the interval @qn

*~p!,qn
*~1 � p!#

expands as the sample size increases, which will make the bootstrap critical
value bigger than that of the fixed G+ Therefore, the bootstrap with the fixed G
should have a higher power than the one with the random G+ See the simulation
results in the next section+ After all, G is a fixed compact set in the original
sample under the alternative+

4. MONTE CARLO SIMULATION

This section examines the finite-sample performance of RBB of Wn compared
to that of the conventional ADF test+ For the sake of fair comparison, we apply
RBB to the conventional ADF test as explained in Paparoditis and Politis ~2003!+
We also compare different choices of G+ Because of the heavy burden of com-
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putation, the number of simulation repetitions and of bootstrap iterations is set
at 200 in the following computations+

Although the theory is developed for a two-regime model, the result readily
extends to more general models+ In practice, three-regime threshold autoregres-
sions are commonly used+ Because the stationarity of the model depends on the
coefficients of the outside regimes, the testing problem is in principle the same
as the two-regime model although some auxiliary assumptions are required under
the null+A restricted model, which is also called band-type threshold autoregres-
sion, is considered in this simulation study:

Dyt � a1 yt�11$ yt�1 � g1%� a2 yt�11$ yt�1 � g2 %� ut , (10)

where g1 � g2+ This model incorporates the no-adjustment periods in the mid-
dle regime and is commonly used in the threshold cointegration literature ~see
Lo and Zivot, 2001!+ The null hypothesis is the same as ~3!, and the test statis-
tic can be constructed exactly the same as in ~7! except that the supremum is
now taken over both g1 and g2+

Several details remain to be determined to implement RBB in practice+ One
is the selection of the block length b and the lag order p+ In this experiment we
try several values of b and p to see how the performance of RBB depends on
those choices+We do not attempt data-dependent methods+ The parameter space
G is an interval @� Tg, Tg# , where Tg is the maximum of 6yt 6+ As the sample size
gets bigger, lower quantiles need to be employed to ensure boundedness+ But
the maximum seems to work fine in the sample size encountered in practice+
We need to introduce a trimming parameter m, which is the minimum number
of observations assigned to each regime when we estimate the model ~5!; how-
ever, this constraint is not binding in large samples because of the recursion
property of the Brownian motion+ The number m is set at 10 in our experiment+
Specifically, a bootstrap statistic Wl

* is computed by taking the supremum of
Wl
*~g! over the set

�g1,g2 � @� Tg, Tg# , 6�
t�2

n

1$ yt�1
* � g1%� m and �

t�2

n

1$ yt�1
* � g2 %� m� + (11)

Data are generated from ~10! with restrictions a1 � a2 � a and �g1 � g2 �
g+ Furthermore, let ut � rut�1 � «t � u«t�1, where $«t % follows independent
and identically distributed ~i+i+d+! standard normal distributions+ As is common
in the conventional unit root testing literature, we consider the following com-
bination of ~r,u!: ~0, 0!, ~�0+5, 0!, ~0+5, 0!, ~0,�0+5!, and ~0, 0+5!+ The null
hypothesis is a� 0+ When a is not zero, we set the threshold parameter g at 4
or 8+ As the parameter g increases, the no-adjustment region becomes larger,
which may have an influence on the power of the tests+

Table 1 summarizes the result+We only report the result with the block length
b � 6 and the lag order p � 3 to save space+ We tried different values of b and
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p, and such cases are reported in Seo ~2005!+ The results are similar to the one
reported here+ The rows with a � 0 correspond to the empirical sizes of the
tests+ Both the ADF and Wn tests have reasonable size for most error types,
even in this small sample size of 100+

The power of the tests is examined with a � �0+1, and the rows with g �
4 and 8 correspond to this+ We also consider two different sample sizes of 100
and 250+ Across most parametrization, Wn has better power than ADF, which
can be seen more clearly as the sample size n increases from 100 to 250+
Especially when n � 250 and g � 8, the rejection frequencies of Wn are about
two or three times higher than those of ADF+ We also find that the increase of
the threshold parameter g results in the decrease of power for both the ADF
and Wn tests+ This drop of power is natural in the sense that the higher g
means the broader no-adjustment region+ Yet, this change in g deteriorates ADF
much more than Wn+ For example, see the case with ~r,u! � ~0, 0!, ~0+5, 0!,
and ~0, 0+5! when n � 250+ Another feature of the simulation results is that
both tests have relatively low power when the error ut has a negative auto-
regressive ~AR! or moving average ~MA! component+ This is due to the fact
that the proportion of the no-adjustment region is bigger in those cases than
in the other cases for a given g+

Table 2 compares two different choices of G+ The Wn
R indicates the boot-

strap based on the random parameter space+ Here the parameter space is set
by trimming the lower and upper 10% of the threshold variables+ As discussed
in the preceding section, the power is significantly lower than that of Wn, which
is based on the fixed parameter space+ It is even lower than that of the ADF
test+

Table 1. Size and power of unit root tests

~r,u! ~0, 0! ~�0+5, 0! ~0+5, 0! ~0,�0+5! ~0, 0+5!

n � 100
a � 0 ADF 0+050 0+065 0+075 0+085 0+050

Wn 0+040 0+065 0+070 0+080 0+075
g � 4 ADF 0+140 0+115 0+195 0+125 0+190

Wn 0+165 0+140 0+190 0+115 0+205
g � 8 ADF 0+110 0+080 0+145 0+110 0+105

Wn 0+195 0+070 0+195 0+095 0+180

n � 250
g � 4 ADF 0+380 0+270 0+755 0+305 0+745

Wn 0+715 0+460 0+735 0+425 0+765
g � 8 ADF 0+140 0+105 0+230 0+140 0+270

Wn 0+475 0+250 0+695 0+145 0+665

Note: 5% test; p � 3, b � 6, RBB+
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5. CONCLUSION

This paper has developed the Wald test and RBB to test the null hypothesis of
a unit root in the threshold autoregression+ The simulation shows that our test
outperforms the ADF test when the alternative is a stationary threshold auto-
regression and vice versa when it is a stationary linear process+ In practice, it
will be prudent to apply both methods and to interpret rejection by either of the
two tests as evidence for the rejection of the presence of unit root in the pro-
cess+ Furthermore, the intercepts also play an important role in determining the
stationarity of a threshold process+ We leave this issue for future research+
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APPENDIX

The following two lemmas will be repeatedly used to prove main theorems+ For proofs,
refer to the proofs of Lemmas 6 and 7 of Seo ~2005!+

LEMMA 6+ Suppose that Assumption 1 holds and $at ,bt % is strictly stationary with
E6at 6 � ` and E6bt 6 � ` and $wt % is uniformly integrable. Then

E�1

n �
t�1

n

61$at � yt � bt %wt 6�r 0.

LEMMA 7+ Suppose that the sequence $wt � mw% is a uniformly integrable L1-
mixingale and Assumption 1 holds. Then, for any integer k,

1

n1�k02 �
t�1

n

yt
k1$ yt � g%wt n mw�

0

1

Bk1$B � 0%.

Proof of Theorem 1. It is sufficient to derive the convergence of ~10n!�t�2
n

yt�11$ yt�1 � 0%ut for the same reason as in Lemma 7+ Let zt � �s�1
` Et ut�s and «t �

�s�0
` ~Et ut�s � Et�1ut�s!, where Et X � E~X 6Ft ! and Ft is the natural filtration+ Ob-

serve that ut � «t � ~zt � zt�1!+ Hansen ~1992! shows that $«t % is a martingale differ-
ence sequence and that $utzt � Eutzt % is a uniformly integrable L1-mixingale+ Then,

1710 MYUNG HWAN SEO



www.manaraa.com

1

n �
t�2

n

yt�11$ yt�1 � 0%ut �
1

n �
t�2

n

yt�11$ yt�1 � 0%«t � Ln � R1n � R2n ,

where R1n � ~10n!yn�11$ yn�1 � 0%zn, R2n � ~10n!�t�2
n ~ yt 1$ yt � 0 � yt�1% �

yt�11$ yt�1 � 0 � yt %!zt , and Ln � ~10n!�t�2
n ut zt1$ yt�1 � 0%1$ yt � 0% +

Because the transformation s1$s � 0% is continuous and $«t %t�1
n is a martingale dif-

ference sequence, it follows from Kurtz and Protter ~1991! that ~10n!�t�2
n yt�11$ yt�1 �

0%«t n �0
1 B1$B � 0%dB+ As yt � yt�1 � ut , we have

1

n �
t�2

n

ut zt @1$ yt�1 � 0, yt � 0%� 1$ yt � 0%#�
1

n �
t�2

n

ut zt1$ yt�1 � ut � 0 � yt�1%,

which is op~1! by Lemma 6 because utzt is uniformly integrable+ This and Lemma 7
yield that

Ln �
1

n �
t�2

n

ut zt1$ yt � 0%� op~1!n l�
0

1

1$B � 0%,

because utzt � l is a uniformly integrable L1-mixingale+
Finally, we show that R1n and R2n are op~1!+ First, note that

sup
t�n

1

n
6yt 1$ yt � 0%zt�16� sup

t�n

1

Mn
6yt 6 sup

t�n

1

Mn
6zt�16� Op~1!op~1!+

Second, replace yt by yt�1 � ut and note that

6R2n 6 �
1

n �
t�2

n

~6yt�1zt 6� 6ut zt 6!1$6yt�16� 6ut 6%�
1

n �
t�2

n

26ut zt 61$6yt�16� 6ut 6%, (A.1)

which is op~1! by Lemma 6+ �

Proof of Theorem 2. Let Sut � ut � ~10n!�t�p�2
n ut and xt � ~x1t

' , x2 t
' !', where

x1t � � yt�11$ yt�1 � g%�
1

n �
t�p�2

n

yt�11$ yt�1 � g%

yt�11$ yt�1 � g%�
1

n �
t�p�2

n

yt�11$ yt�1 � g%� ,
x2 t � �ut�1 �

1

n �
t�p�1

n�1

ut , + + + ,ut�p �
1

n �
t�2

n�p

ut�'+
Here, the dependence on g of x1t and xt is suppressed+We first derive limit distributions
of [ai ’s+ Under the null,
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�n [a1~g!

n [a2~g!
� � � 1

n2 �
t�p�2

n

x1t x1t
' �

1

n
{

1

n �
t�p�2

n

x1t x2 t
' �1

n �
t�p�2

n

x2 t x2 t
' ��1 1

n �
t�p�2

n

x2 t x1t
' ��1

� �1

n �
t�p�2

n

x1t Sut �
1

n �
t�p�2

n

x1t x2 t
' �1

n �
t�p�2

n

x2 t x2 t
' ��1 1

n �
t�p�2

n

x2 t Sut�+
As in Lemma 7, supg~10n!�t�p�2

n 6yt�11$ yt�1 � g% � yt�11$ yt�1 � 0%6 � op~1!,
where the supremum is taken over a compact set+ The continuous mapping theorem
yields 10~nMn !�t�p�2

n yt�11$ yt�1 � 0% n �0
1 B1$B � 0%+ Therefore,

1

n2 �
t�p�2

n

x1t x1t
' n � �

0

1

OBL
2 ��

0

1

OBL OBU

��
0

1

OBL OBU �
0

1

OBU
2 � + (A.2)

Furthermore, by Theorem 1,

1

n �
t�p�2

n

x1t Sut n � �0

1

OBL dB � l�
0

1

1$B � 0%

�
0

1

OBU dB � l�
0

1

1$B � 0%� + (A.3)

Next, we show that

1

n �
t�p�2

n

yt�11$ yt�1 � g%ut�pn �
0

1

B1$B � 0%dB � �l� �
i�0

p�1

r~i !��
0

1

1$B � 0%,

(A.4)

for which it is sufficient to show that

1

n �
t�p�2

n

~ yt�11$ yt�1 � g%� yt�p�11$ yt�p�1 � g%!ut�pn Trp�
0

1

1$B � 0%,

because of Theorem 1+ To do so, note that

yt�11$ yt�1 � g%� yt�p�11$ yt�p�1 � g%

� utp1$ yt�1 � g%� yt�p�1~1$g � yt�p�1 � g� utp %� 1$g� utp � yt�p�1 � g%!,

where utp � ut�1 � {{{ � ut�p � yt�1 � yt�p�1+ Next, it follows from Lemma 6 that

1

n �
t�p�2

n

6yt�p�1~1$g � yt�p�1 � g� utp %� 1$g� utp � yt�p�1 � g%!ut�p 6

�
1

n �
t�p�2

n

~6 Tg 6� 6utp 6!6ut�p 61$6yt�p�16� 6 Tg 6� 6utp 6%rp 0 (A.5)
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and from Theorem 1 that

1

n �
t�p�2

n

utp ut�p1$ yt�1 � g%n Trp�
0

1

1$B � 0%+ (A.6)

Then Theorem 2, ~A+5!, and ~A+6! establish the convergence in ~A+4!, which in turn
yields

1

n �
t�p�2

n

x1t x2 t
'

n � �0

1

OBL dB � ~l� Tr1!�
0

1

1$B � 0%, J �
0

1

OBL dB � ~l� Trp !�
0

1

1$B � 0%

�
0

1

OBU dB � ~l� Tr1!�
0

1

1$B � 0%, J �
0

1

OBU dB � ~l� Trp !�
0

1

1$B � 0%� +
Next, it follows from the law of large numbers that

1

n �
t�p�2

n

x2 t x2 t
' n Gp and

1

n �
t�p�2

n

x2 t Sut n gp , (A.7)

which completes the convergence of [ai ’s+ It remains to derive the limit of [s2~g!+ Define
kn as a p � 2 dimensional diagonal matrix whose first two elements are n�1 and the
others are n�102 + Then, the convergences ~A+2!–~A+4! and ~A+7! yield

[s 2~g! �
1

n �
t�p�2

n

Sut
2 � �n�102kn �

t�p�2

n

xt Sut�'�kn �
t�p�2

n

xt xt
'kn��1�n�102kn �

t�p�2

n

xt Sut�
n s 2 � gp

'Gp
�1 gp + (A.8)

�

The following notation is convenient for the development that follows+ For a given t,
define m � @~t � 2!0b# and s � t � mb � 1+ Let im be the ~m � 1!th random draw from
the set $1,2, + + + , n � b% uniformly+ As we connect the independently resampled blocks
of length b end-to-end to construct $ui

*%i�1
l , ut

* should be an observation in the block
drawn ~m � 1!th and be the sth observation within that block+ Thus, we can write ut

* �
Iuim�s +

Proof of Theorem 3. Let Mr � @~ @lr#� 2!0b# and B � min$b, @lr#� mb � 1%+ Then,
~1��Ml !�t�1

@lr# ut
* � ~1��Ml !�m�0

Mr �j�1
B Iuim�j , and it is sufficient to consider ~1��Ml !

�m�0
Mr �j�1

b Iuim�j , as demonstrated in Theorem 3+1 of Paparoditis and Politis ~2003!+ See
also ~8+1! and the following discussion in Paparoditis and Politis ~2003!+ Because
10~n � b!�i�1

n�b �j�1
b ui�j � �j�1

b E *uim�j , let

1

Ml
�

m�0

Mr

�
j�1

b

Iuim�j � I1 � I2 � I3 ,

where I1 � ~1��Ml !�m�0
Mr ~�j�1

b uim�j � �j�1
b E *uim�j !, I2 � [a1~1��Ml !�m�0

Mr

~�j�1
b yim�j�11$ yim�j�1 � g% � �j�1

b E *yim�j 1$ yim�j � g%!, and I3 is similarly defined
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as I2 with [a1 and the inequality � in I2 replaced by [a2 and �, respectively+ Note first
that

E *	�
j�1

b

yim�j�11$ yim�j�1 � g%
�
1

n � b �
t�1

n�b

�
j�1

b

yt�j�11$ yt�j�1 � g%

� b sup
t�n
6yt 6� Op~bMn !, (A.9)

E *	�
j�1

b

yim�j�11$ yim�j�1 � g%
2

�	b sup
t�n
6yt 6
2

� Op~b
2n!+ (A.10)

Because each block is drawn independently, ~A+9! and ~A+10! imply that

E *� 1

Ml
�

m�0

Mr ��
j�1

b

yim�j�11$ yim�j�1 � g%� �
j�1

b

E *yim�j 1$ yim�j � g%��2

�
1

Ml
�

m�0

Mr

E *���
j�1

b

yim�j�11$ yim�j�1 � g%� �
j�1

b

E *yim�j 1$ yim�j � g%��2

,

which is Op~bn! uniformly in g � G and r � @0,1# + Therefore, E *I2
2 � Op~bn�1!, and,

similarly, E *I3
2 � Op~bn�1!+

Then the convergence of ~1��Ml !�t�1
@lr# ut

* is completely determined by I1+ However, I1

is based on the resampling of ut ’s, and its convergence to the Brownian motion is already
developed in Theorem 3+1 of Paparoditis and Politis ~2003!, and the convergence of v*

is provided in the following lemma+ �

Similarly as in the preceding proof, the following lemma is straightforward from
Lemma 8+1 of Paparoditis and Politis ~2003!+

LEMMA 8+ Under the assumptions of Theorem 3 and as n r `, we have (i)
l�1 �t�1

l ut
* p
&& 0, (ii) v*

2
� var*~l�102 �t�2

l ut
*!

p
&& v2, and (iii) s *

2
� l�1 �t�1

l ut
*2 p
&&

s2.

Proof. ~i! Note that l�1 �t�1
l ut

* � l�1 �m�0
k�1 �j�1

b uim�j � op~1! as in the first para-
graph of the proof of Theorem 3 and that l�1 �m�0

k�1 �j�1
b uim�j is the sample mean of a

block bootstrap series that converges to Eut � 0 ~see Künsch, 1989!+ As ~ii! and ~iii!
can be shown similarly, we show ~ii!+ Using the same notation in the proof of Theo-
rem 3, we write l�102 �t�2

l ut
* � I1 � I2 � I3+ It is shown in the same proof that

E *Ii r 0 and E *Ii
2 r 0 in probability for i � 2 and 3+ Thus, rewriting I1 yields

var*~l�102 �t�2
l ut

*! � E *~~1��Ml !�m�0
Mr �j�1

b ~uim�j � E *uim�j !!
2 � op~1!+ The remain-

ing steps are identical to the proof of ~ii! of Lemma 8+1 of Paparoditis and Politis
~2003!+ �

Proof of Theorem 4. Part ~i!+ Let Tg � max$6g 6;g � G%+ Then yt�1
*2

61$ yt�1
* � g% �

1$ yt�1
* � 0%6 � Tg2 for any g � G, and thus l�2 6�t�2

l yt�1
*2

1$ yt�1
* � g% � �t�2

l

yt�1
*2

1$ yt�1
* � 0%6r 0+ Then, it follows from the continuous mapping theorem and Theo-

rem 3 that l�2 �t�2
l yt�1

*2

1$ yt�1
* � 0% n �0

1 B21$B � 0%+
Part ~ii!+ The proof is based on the martingale approximation for the bootstrapped

sample and thus similar to the proof of Theorem 1+ Let Et
*X * � E *~X * 6Ft

*!, where
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Ft
* is the natural filtration associated with the bootstrapped sample+ Without loss

of generality, assume that ut
* � 0 if t � l and let ut

* � «t
* � ~zt

* � zt�1
* ! where «t

* �

�j�0
` ~Et

*ut�j
* � Et�1

* ut�j
* ! and zt

* � �j�1
` Et

*ut�j
* + Because of the independent resam-

pling of blocks of observation, Et
*ut�j
* � ut�j

* if t and t � j belong to the same block, and
Et
*ut�j
* � E *ut�j

* otherwise+ Because of the centering of ~9!, �j�1
b E *ut�j

* � 0 for any
t � 2, + + + , l � b+ Thus, «t

* � 0, if s � 1, and zt
* � �j�1

b�s ut�j
* + As a consequence, the

integrated process of «t ’s up to time l corresponds to that of bootstrap samples ~up to
time k! that are independently resampled from the sums of blocks of observations+ There-
fore, defining R and L as in the proof of Theorem 1 and noting that zl

* � 0, we may
write

1

l �
t�2

l

yt�1
* 1$ yt�1

* � g%ut
*�

1

l �
t�2

l

yt�1
* 1$ yt�1

* � g%«t
*� Ll

*� R2l
* + (A.11)

To show that R2l
* � op~1! uniformly in g � G, we may write ut

*zt
* as Iuim�s �j�s�1

b Iuim�j ,
which can be rewritten as

�
j�s�1

b ��uim�s �
1

n � b �
g�1

n�b 1

b �
v�1

b

uv�g��uim�j �
1

n � b �
g�1

n�b 1

b �
v�1

b

uv�g�� (A.12)

� [a1
2 �

j�s�1

b ��yim�s�11$ yim�s�1 � g%�
1

n � b �
g�1

n�b 1

b �
v�1

b

yv�g1$ yv�g � g%�
� �yim�j�11$ yim�j�1 � g%�

1

n � b �
g�1

n�b 1

b �
v�1

b

yv�g1$ yv�g � g%��
(A.13)

� [a2
2 �

j�s�1

b ��yim�s�11$ yim�s�1 � g%�
1

n � b �
g�1

n�b 1

b �
v�1

b

yv�g1$ yv�g � g%�
� �yim�j�11$ yim�j�1 � g%�

1

n � b �
g�1

n�b 1

b �
v�1

b

yv�g1$ yv�g � g%�� +
(A.14)

Note that ~A+13! and ~A+14! are op~1! uniformly in t and g because supt,g yt1$ yt � g%�
Op~n102! as in the first paragraph of the proof of Theorem 3+ Also note that 10~n � b!
�g�1

n�b~10b!�v�1
b uv�g � Op~1��Mn ! ~see Künsch, 1989, p+ 1227!+ Then, like ~A+1!, we

have

6R2l
* 6 �

1

l �
t�2

l

~6 Tg 6� 26ut
*zt
* 6!1$6yt�1

* 6� Tg� 6ut
* 6%

�
1

l �
t�2

l � 6 Tg 6� 2 �
j�s�1

b

uim�s uim�j� 2~b � s!6uim�s 6Op� 1

Mn
�

� 2 �
j�s�1

b

uim�jOp� 1

Mn
�� op~1! �

� 1$6yt�1
* 6� Tg� 6ut

* 6%+
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Because $ut % is independent of $im% , �j�s�1
b uim�s uim�j is uniformly integrable by

Theorem 3+2 of Hansen ~1992!, not to mention �j�s�1
b uim�j and uim�s + And write,

for any M1 � 0,

1

l �
t�2

l

E1$6yt�1
* 6 � Tg� 6ut

* 6%�
1

l �
t�2

l

E1$6yt�1
* 6� Tg� M1%�

1

l �
t�2

l

E1$6ut
* 6 � M1%+

(A.15)

Then it follows from Theorem 3 and the proof of Lemma 6 in Seo ~2005! that the first
term on the right-hand side of ~A+15! is o~1!+ Next, ~10l !�t�2

l E *1$6ut
* 6 � M1% �

sup2�t�l E *1$6ut
* 6 � M1% � P *$u2

* � M1% � 2b0n, because supx�R 6P *$ut
* � x% �

P *$uj
* � x%6 � 2b0n for any j and t+ Furthermore, because $ut % is strictly stationary

and independent of $im% and u2
* � ui1 � op~1!, for any « � 0, there is M1 satisfying

E @P *$u2
* � M1%# � P $ui1 � M1 � «02% � «02 � «+ This in turn yields that the second

term on the right-hand side of ~A+15! is also o~1!+ Finally, we conclude that 6R2l
* 6 �

op~1! by uniform integrability and the fact that ~A+15! is negligible ~as in the proof of
Lemma 6!+

Next, a similar argument in Lemma 8 yields E *ut
*zt
* � �j�1

b�s E * Iuim�s Iuim�s�j
p
&& l+

Then, it follows from uniform integrability, Theorem 3, and the same argument as in the
proof of Lemma 7 in Seo ~2005! that the limit of Ll

* is l �0
1 1$B � 0%+

Finally, for the convergence of the first term in ~A+11!, write that

1

l �
t�2

l

yt�1
* 1$ yt�1

* � g%«t
*�

1

k �
m�1

k�1

Ym�1
* 1$Ym�1

* � g��Mb%Vm
*,

where Vm
* � ~1��Mb!�j�1

b umb�1�j
* � ~1��Mb!«mb�2

* and Ym
* � �s�0

m Vs
* � ~1��Mb!ymb�1

* +
Note that $Vm

*% is an i+i+d+ sequence under the bootstrap distribution, because $Vm
*% is a

normalized sum of each block that is resampled independently+ Its mean is zero and its
variance is Op~1! as shown in Lemma 8+ Furthermore,

E * sup
0�g� Tg

1

k �
m�1

k�1

Ym�1
* 1$Ym�1

* � g��Mb%Vm
*�

1

k �
m�1

k�1

Ym�1
* 1$Ym�1

* � 0%Vm
*

�
Tg

Mb

1

k �
m�1

k�1

Pr $0 � Ym�1
* � Tg��Mb%E * 6Vm

* 6� op~1!,

and the transformation s1$s � 0% is continuous+ Therefore, the convergence follows from
the invariance principle in Theorem 3, the continuous mapping theorem, and the con-
vergence to stochastic integral of Kurtz and Protter ~1991!+ �

Proof of Theorem 5. Because we already have the invariance principle for RBB and
the bootstrap version of Theorem 1 in hand, the proof of this theorem is straightforward
following the same line of argument of the proof of Theorem 2+ �
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